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Structure and Dynamics of a Dense 
Dipolar System in an Electric Field and 
Their Relevance to Electrorheological Fluids 

N. K. Jaggi ~ 

Results of computer simulations of a dense system of dipolar spheres in an 
electric field are summarized. Dissipative and Hamiltonian dynamics algorithms 
have been used to find energy minima of the system for varying particle den- 
sities. The structures obtained by these simulations are in reasonable agreement 
with experimentally observed structures in electrorheological (ER) fluids. 
Qualitative agreement is also obtained with the limited available experimental 
observations on the dynamics of ER fluids. 
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1. I N T R O D U C T I O N  

During the last 3 years, different groups (1 9~ have studied the fundamental 
physics of electrorheological (ER) fluids and independently arrived at a 
model in terms of a colloidal suspension of highly polarizable solid 
particles in low-dielectric-constant fluids, along with the appropriate 
hydrodynamic interactions. The yield stress of the solid that forms in the 
presence of an electric field above a threshold (m) value Ec has been 
estimated (7) assuming that the induced structure consists of independent 
chains of dielectric particles spanning the electrodes. This approximation of 
the structure is frequently used and is supported qualitatively by recent 
computer simulations. (3'4) 

One of the unresolved problems is the following. Optical microscopy 
of two- and three-dimensional suspensions of microspheres in electric fields 
has shown (7-9) that the structures are rarely chainlike. At typical densities 
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where finite yield stresses exist in the presence of an electric field, the 
observed structures are correctly described as thick columns (7'8/or fibrils as 
they are often referred to. Also, these columns that span the electrodes are 
far from being uniform. They often exhibit cross-linking and constrictions, (8) 
the width of the columns varying significantly as one moves along the field 
direction between the electrodes. Computer simulations (3) referred to above 
do not agree with these experimental observations. The simulations found 
either single chains or double-width strands. 

On the other hand, our mean field analysis (1~2) of the free energy of a 
dipolar gas in an electric field predicts that the osmotic pressure of the par- 
ticle system becomes negative above a critical electric field Ec(T). There- 
fore, at sufficiently low temperatures or at sufficiently high electric fields, 
the system should have a tendency to phase-separate. Obviously, a mean 
field analysis that ignores axial anisotropy cannot predict the structure of 
the high-density phase that would result from this phase separation. Its 
predictions regarding the detailed nature of the transition (1) must also be 
considered tentative unless verified by a more precise analysis, 

2. SCOPE OF THIS W O R K  

This paper has a narrowly defined goal. In particular, we have nothing 
to say about what happens in the presence of shear, the subject of impor- 
tant earlier simulations (4) which simulate a small number of particles (25) 
but treat the hydrodynamics carefully. We also make no claims about the 
appropriateness or otherwise of other models of ER behavior. The only 
question being asked is the following. Is the microscopic phase separation, 
viz. the formation of thick columns, as seen by experiments (7-9) and expec- 
ted from our earlier mean field analysis, (1'2~ consistent with computer 
simulations of the dipolar gas model? 

New results of our computer simulations of a two-dimensional dipolar 
gas model are summarized. Even though the models differ in apparently 
small details, they seem to have noticeable effect on the resulting structures. 
Some qualitative comments are also offerred regarding metastable local 
minima, allowing for some hard-sphere overlap at intermediate steps of the 
simulation and the possible importance of choosing a cutoff of the dipolar 
interaction. 

We do find a structure that is in qualitative agreement with 
experiments. (7'8) It is anisotropic, long-range percolated, microscopically 
phase-separated and has local regions of imperfect triangular lattice 
ordering. 



Dense Dipolar System in Electric Field 1095 

3. THE M O D E L  

Our system consists of a given density of polarizable hard spheres of 
diameter rr, each having an induced dipole moment p along the direction 
of the applied electric field E. In a complete theory, this induced dipole 
moment must be determined self-consistently, taking into account the 
structures being formed, as has been attempted earlier. (5) In all the simula- 
tions referred to (3'4) and in the present work, this is considered to be a 
renormalizable parameter which sets the energy and therefore time scale, 
but does not affect the resulting structure. The spheres are assumed to be 
neutrally buoyant in a dielectric fluid medium having a viscosity ~/c, 
contained between parallel metallic electrodes with a spacing of Lza 
maintaining an electric field E along the z axis. 

The dynamics of this system is given by the following equation: 

d2ri_ 
-V~U({r;}) - 3~/ca @ (1) m dt 2 

where the total electrostatic energy U({rj}) is approximated by the dipolar 
form 

u({rA) = _p2 y~ (3 cos 2 0 ~ -  1) 
{~-} r~. (2) 

In the simulations we directly use the expression for the electrostatic force 
Fi on the ith dipole 

El=-ViU({rj})=3p2E 1 J rT[.(3cos2Oa-1)Or+(sin20,;) io] (3) 

The sum runs over all dipoles and their sequence of images in the two 
metallic electrodes. 

The two approximations made in writing these equations deserve com- 
ment. A more sophisticated treatment of the hydrodynamic forces is 
necessary for a complete description of the flow properties and has in fact 
been used in the literature. (4) But since all velocities are zero in the ground 
state, the present simplification has no effect on the equilibrium structure 
and therefore also on the static yield stress that may be computed for these 
structures. 

Multipolar corrections may also be important in determining fine 
details of the observed structures. But in this and earlier t3) work, these are 
ignored. 

Let us consider two limiting cases of Eq. (1). With the viscous term set 
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to zero, we have the many-body Hamiltonian of a classical, dense dipolar 
gas in an electric field 

d2ri 
m d t  2 - -V~U({rj}) (4) 

The ground-state and finite temperature properties of this system can 
be computed within the framework of equilibrium statistical mechanics. 

The other limiting case is the noninertial, fully dissipative equation 
which is obtained by setting the left-hand side of Eq. (1) to zero, 

dr i 
3~,7c~ 7 = -vi u(,{rj}) (5) 

If the electric field and the viscosity of the carrier fluid are sufficiently 
large and the temperature is sufficiently low, the noninertial equation (5) 
can be a rather good approximation for ER fluids. However, for fine par- 
ticles, at smaller electric fields, at higher temperatures, or for small viscosity 
of the continuous medium, all the terms must be preserved and Brownian 
forces must also be included at equal footing to understand the structures 
and dynamics. 

4. EQUIL IBRIUM STRUCTURES FROM DISSIPATIVE 
D Y N A M I C S  

Our primary goal is to find structures that are energy minima of this 
classical interacting system; i.e., {r j} that minimizes the dipolar interaction 
energy U({rj}). Since the minima of energy are attractors of the dynamics 
in phase space, it should be possible to obtain the ground state by 
investigating the dynamics of either the inertial equations of motion (4) or 
that of the noninertial, fully dissipative equations of motion (5). 

The simplest way, at least in principle, to obtain the ground state is to 
integrate Eq. (5) starting from any starting random configuration {rj}. In 
this paper, lengths and times are normalized and are given in the natural 
units of the particle diameter a and t* = rcqea6/p 2, respectively. Numerically 
precise integration of Eq. (5) for a sufficiently long time is guaranteed to 
take the system into a minimum of the total energy. In earlier simula- 
tions, (3) the Euler method was used with very small values of the time step 
6 t  = 0.001 and the dipolar interaction was cut off at rc = 5. 

The present simulations differ from the previous ones(3 '4) in some 
apparently small details, which nevertheless seem to have noticeable effect 
on the resulting structures. These are discussed in the following. 
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First, for complex anisotropic interactions of the kind under con- 
sideration here, one must anticipate the possibility of many local energy 
minima in phase space. And numerically precise integration of Eq. (5) 
guarantees that the system gets permanently trapped in the local minimum 
which is nearest to the starting configuration. This is highly unlikely to be 
representative of either the global minimum or even the structures that 
form in real systems, where damping is finite and inertial and Brownian 
forces are nonzero.,Our simulations using third-order Runge-Kutta with 
6t = 0.005 and earlier simulations (3) using the Euler method with 6t--0.001 
lead to very similar structures of ER fluids. 

The brute-force approach to finding the deepest minimum will 
then consist of starting from many different initial configurations {rj}; 
integrating Eq. (5) precisely with very small 6t till they get to the nearest 
local minimum; Computing the total energies in all these local minima; and 
looking for the deepest minimum. In this case, the computation time goes 
as ,,~n2NmT/6t, where Nm, n, and T, respectively, indicate the number of 
local minima obtained, the number of particles, and the total time over 
which the simulation is carried out. 

The algorithm used here is a slight modification of the above 
approach, but results in significant savings of computation time and allows 
us to extend simulations for much longer total times T. It consists of a 
two-step integration. Since we do not want to get trapped in the nearest 
local minimum encountered, we first intentionally use the Euler method 
with a moderately large time step At so that the system can skip over, 
without getting trapped in, shallow minima or those minima whose basin 
of attraction is not too wide. During this part of the simulation, the electro- 
static energy decreases monotonically at first and then starts oscillating. 
~I ne actual trajectory in this simulation does not accurately represent real 
dynamics and sometimes has the unphysical, finite penetration of the 
particles a little bit inside the hard core. When as a result of updating the 
positions, spheres penetrate into each other, this overlap is corrected by 
moving the spheres apart along the line joining their centers. Many of the 
configurations generated toward the end of the first coarse simulation are 
used as starting configurations for a second series of numerically precise 
simulations. At the beginning of this second simulation, any overlap of the 
hard cores is removed by moving the particles radially apart, and the 
system is allowed to evolve further using a much smaller time step 6t to try 
to fall into the nearest minimum. In the present simulations, At was 50-100 
times larger than 6t. The computation time for this mode of calculation is 
"~n2[ T/At + Nm AT/6t]. 

It is not particularly enlightening to present our results in detail unless 
one can produce an animation. In the following, therefore, we summarize 
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the key features. We always employ periodic boundary conditions along 
the y axis and of course carry the dipole images along the electric field z 
axis. The interaction cutoff distance ranges from a minimum of 20 up to 80 
in some runs, but is never less than 2Lz. 

We would like to point out that this may be of some importance. It 
is obvious that the first-order effect of the dipolar interaction in a dilute 
system is to line up particles along chains in the direction of the dipole 
moment. However, in concentrated systems, as the present simulations and 
real ER fluids are, the coarse scale structure can be strongly affected by the 
effective interactions between chains and chain segments that are forming. 
In particular, cutting off the dipolar interaction at less than 2Lz, as was 
done in earlier simulations, partially decouples the dipoles and their images 
in the electrodes. Resulting structures could then be qualitatively different. 

Figure 1 shows the configuration of a system of 252 particles in a 
40 x 10 [Ly x Lz] toward the end of one of the simulations. In all cases, the 
first coarse integration was carried out with At=0.05 and the final fine 
integration was carried out with 6t=0.0005. Thus, for example, the 
indicated configuration at t = 200 is obtained by integrating for 3996 steps 
using At = 0.05 to get to t = 199.8 followed by 400 steps using & = 0.0005. 

The structures obtained are in reasonable agreement with what has 
been observed in real ER fluids using optical microscopy.~7'8~ In particular, 
the following aspects are common between experimental structures and 
present simulations. 

1. There is clear directional percolation of particles spanning the 
electrodes. This explains the ability to transfer shear stress from one 
electrode to another even at zero strain rate, viz. its solidlike behavior. 

2. The structures are far from chainlike: they consist of thick columns 
of particles. The simulations are not extensive enough to establish a quan- 
titative relation between column thickness and electrode spacing, but do 
suggest that for a given dipole moment (which in turn means a given 
electric field), larger interelectrode spacing leads to thicker columns. This 
would make the agreement with observed structures even better. 

3. There are regions that are devoid of particles and contain just 
the continuous medium. The microscopic tendency to phase-separate is 
obvious. 

4. The columns themselves are not straight and lined exactly along 
the field. They clearly show necking and also some bending and 
cross-linking between columns. Thus the interface between the high-density 
regions and the low (nearly zero )-density regions is rough, but aligned 
predominantly along the field axis. 
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Fig. 1. Two  of the lowest energy structures obtained using the modified dissipative dynamics 
algori thm as described in the text. n = 252 particles, L z = 10, Ly = 40. 

One feature that is seen in the simulated structure but not yet observed 
experimentally is the tendency of particles within the thick columns to be 
close-packed. In the present two-dimensional simulations, this leads to a 
triangular lattice-like structure within the columns. By analogy, in three 
dimensions, the columns may be expected to have locally fcc- or hcp-like 
ordering. Any distribution of sphere diameters will of course tend to 
destroy this. 
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Fig. 2. Structure obtained by "cooling" the microcanonical  ensemble (see text) from a very 
high temperature,  n = 252 particles, L z = 10, L~. = 40. 
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Fig. 3. 
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5. G R O U N D  S T A T E  U S I N G  H A M I L T O N I A N  D Y N A M I C S  

If one starts the system from any arbitrary configuration at rest and 
lets it evolve under the Hamiltonian equations of motion (3), the inter- 
actions soon redistribute part of the potential energy as the kinetic energy 
of the particles, equivalent to a microcanonical ensemble with a given total 
energy. The standard trick used in MD studies of phase transitions is 
to continue to remove kinetic energy from the system, by a downward 
rescaling of all speeds during the iteration, to reduce the temperature of the 
system. The size and frequency of this rescaling of speeds determine an 
effective cooling rate. If the system is cooled sufficiently "slowly," one 
expects to find the ground-state structures. 

Figure 2 shows the structure obtained when the same system as in 
Fig. 1 was "cooled" in the sense described above, from a very high tem- 
perature to a very low (but nonzero) temperature. The resulting structure 
has essentially the same features as found earlier. This is reassuring. 

6. D Y N A M I C  R E S P O N S E  

KlingenbergetaL <3~ showed that for typical engineering ER fluids 
under high fields of the order of 1-2 kV/mm and for typical values of ~/c, 
the dynamic response of the ER fluids to the applied field can be well 
approximated by the noninertiat equations of motion (4). In particular, 
they found in their simulations that chainlike structures form in t,-~ 1 (in 
units of t*) for the case they studied. From known material constants, they 
estimated t* for typical ER fluids under typical conditions to be of the 
order of 10-3sec. This was the first microscopic understanding of the 
following important, though imprecise, experimental observation: the 
response time of ER fluids is often as little as a few milliseconds. 

Figure 3 shows a representative sequence of configurations from 
our simulations for n = 252 particles in a 20 x 20 system at times t = 0.2, 
0.5, 1.0, 2.0, and 5.0. The initial configuration at t = 0  was a random 
one with the constraint of no particle overlap, corresponding to the time 
when the electric field is turned on. It is found that chainlike structures, 
with a distribution of chain lengths, some of them as large as the inter- 
electrode spacing, do indeed form at around t = 2. It is similar to earlier 
simulations ~3) at comparable densities and in qualitative agreement with 
experiments. It is included to indicate the dynamics of these complex fluids. 

822/64/5-6-14 
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